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“TEGHNICAL NOTE 3527

A SECOND~ORDER SHOCK-EXPANSION METHOD APPLICABLE TO
BODIES OF REVOLUTION NEAR ZERO LIFT

By Clarence A. Syvertson and David H. Dennis
SUMMARY

A second-order shock-expansion method gpplicable to bodies of revolu-
tion near zero 1lift is developed. Expresslons defining the pressures on
noninclined bodies are derived by the use of charscteristics theory in
combination with properties of the flow predicted by the generalized
shock-expansion method. This result is extended to inclined bodies to
obtain expressions for the normal-force and pitching-moment derivatives
at zero angle of attack. The method is intended for spplication under
conditions between the ranges of applicability of the second-order poten-
tial theory and the generslized shock-expansion method - namely, when the
ratio of free-stream Mach number to nose fineness ratio is in the nelghbor-
hood of 1.

For noninclined bodies, the pressure distributions predicted by the
second-order shock=expansion method are compsared with existing experimental
results and with predictions of other theories. For inelined bodies, the -
normal -force derivatives and locations of the center of pressure at zero
angle of attack predicted by the method are compared with experimental
results for Mach numbers from 3.00 to 6.28. Fineness ratio 7, 5, and 3

cones and tangent oglves were tested slone and with cylindrical afterbodies

up to 10 diameters long. In genersl, the predictions of the present method
are found to be in good sgreement with the experimental results. For non-
inelined bodies, pressure distributions predicted with the method sre in
good agreement with existing experimental results and with distributions
obtained with the method of cherecteristics. For inclined bodies, the
normal-force derivatives per redisn (for normal-force coefficients refer-
enced to body base area) are predicted within #0.2 and the locations of
the center of pressure are predicted within #0.2 body diameters. On the
basis of these results, the second-order shock-expansion method appears
applicable for values of the ratio of free-stream Mach number to nose
fineness ratio from 0.4 to 2. : :

INTRODUCTLON

The flow gbout bodiles traveling at high supersonic speeds was inves-
tigated by Eggers (ref. 1). He found that under specified conditions such

A
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flows could be considered as locally two-dimensional and that they could
be treated by a generalized shock-expansion method. The application of
this method to nonlifting bodies of revolution had been given previcusly
(ref. 2), and subsequently the method was applied to lifting bodles in
references 3 and 4, It was found that the generalized shock-expansion
method accurately predicted the flow about pointed bodles of revolution
when the hypersonic similarity parameter (ratio of Mach number to body
fineness ratio) was greater than about 1. This method ile,-therefore,
particularly useful in the treatment of flows sbout bodies traveling at
relatively large Mach numbers. At lower speeds, the second~order potential
theory of Van Dyké (ref. 5) has been widely used. (See, also, his hybrid
theory for slightly inclined bodies, ref<—6.) The application of this
theory to bodies traveling at large Mach numbers is often limited, however,
by the restriction that the maximum slope of the body must be samewhat less
than the lope of a free-stream Mach line. : : ’ o S

The ranges of .applicability of the generalized shock-expsnsion method
and the second-order potential theory do not-always overlap, and there
remein, therefore, flows at certain combinations of Mach number and body
shepe which cannot be treated by either theory. Normelly, these interme-
diate flows are encountered when the hypersonic similarity parsmeter based
on nose fineness ratio is in the nelghborhood of 1. Since this is = range
of practical interest; additional theoretical methods are needed.

Some™of this need has been fulfilled recently by the hypersonic small-
disturbance theory (refs. 7 and 8). Im its present state of development),
however, this theory has application only to limited classes of noninclined
bodies of revolution. For example, due to the series form used to repre-
sent the Iressure distribution, it cannot be applied to the nose-cylinder
combinations commonly employed for misslle bodies. 1In large part, then,
the need for a theory applicable at values of the hypersonic similarity
parameter near 1 still remains. ' ' ' -

The present report develops a theory intended to fulfill this need.

This theory is a second-order shock-expansion method. It is developed
by an iteration procedure which employs the generslized method of refer=-
ences 1 through 4 as the first approximation. Expressions are derived
which define the pressures on noninclined bodies of revolution. Expres-
sions are also obtained for the normal-force and pitching-moment deriva-
tives at zero angle of attack. Predictions of the method.are compared ~
with those GF other theories and with experimentsl results.

SYMBOLS

A body cross-sectional area ' -

Ap Body base area ' :

-
P B R T
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function defined by equation (6)

~ characteristic coordinates

normal force

normal-force coefficient,
QoAB

moment about body vertex

pitching-moment coefficient,

P -
pressure coefficient, ————EQ

body diameter
entropy

fineness ratio
(Fineness ratio of the nose section is

total pressure
body length
Mach number
static pressure

dynamic pressure

qohpd

fn.)

rectangular coordinates (streeamline direction and normal to

stresmline direction, respectively)

cylindrical. coordinates (x measured from vertex of body and

@ from windward meridian)

center-of -pressure position (measured from body vertex)

angle of attack

function defined by equation (12)

ratio of specific heats (1.400 for air)
flow deflection angle

function defined by equation (9)
losding (defined by eq. (1k))

function defined by equation (5)
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H © Mach angle (arc sine 1/M) )
v ‘Prandtl-Meyer expasnsion angle .- . L i
o shock~wave angle . _ . A . P
s wfunction defined by equation (13) B
f ~ratio of cross-sectional area of gtreamtube to that at M = 1 i -
(see eq. (7))
Subscripts : L ; e
o ‘free-stream conditions | - = ==
1,2,8,4 conditions evaluated at various points in flow fileld
a afterbody -
c -quantities evaluated for cone tangent to the body -~
8 . quantities evaluated by generalized shock-expansion method ;i
method . - - e
v _ﬁuantities evalusted at vertex of body
o quantities evaluated along downstream face of shock weve = _ . ___ .___
tev quantities evaluated for.cones tangent to body vertex
tex quantities evaluated for cones tangent to body at station =x
£

THEORY -

In the present development of a second-order shock-expansion method,
attention will be restricted to bodies of revolution. It is recognized,
however, that the procedure used herein may, in the future, find applica-
tion to other three-dimensional shspes. T N

The present method is a refinement of the generslized shock-expansion
method of references 1 through 4. On the surface of a body of revolution,
immediately behind a corner, the generalized method represents s first- '
order solutilon for the flow and the present method glves the second-order
solution (see Appendix A). Before proceeding, therefore, it 1s well to _
orient the present analysis with a review of the approximations Involved
in the treatment of the flow about bodies of revolution with the gener- _ .= .
alized method. These epproximations may be listed as follows (see e.g, -
ref. 4): (1) Disturbances incident on an oblique shock wave are largely
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absorbed therein, and hence, reflected disturbances are hegligible; (2)
the flow appears locally two-dimensionsl; (3) surface streamlines may be
taken as meridien lines. In the intermediate range of supersonic speeéds
of interest here, the first approximation is particularly well justified
(see, ref. 9), and it will not be considered further. As & consequence
of the second approximation, a solution given by the generalized method
gatisfies the continuilty equation only epproximately.l Although the con-
tinuity equation does not appear explicitly in the following analysis, it
is this approximation that is refined by the present method. The third
approximation is one for bodies of revolution only when they are inclined.
In the present investigation, only bodies nesr zero 1ift will be consid-
ered. Under this restriction to infinitesimal asngles of attack, an anal-
ysis has shown that the deviation of true streamlines from meridian lines
has negligible effect on surface pressures. In the following development,
therefore, the use of meridian lines as streamlines will be retalned.

Nonlifting Bodles e —

The generalized shock-expansion method was developed for nonlifting
bodies of“revolution from the method of characteristics (ref. 2). This
development may be summsrized with the aid of the equation for the stream-
wise pressure gradient.2 ) _ _ ] T

dp _ __2rp 98 1 Op , ' N .
3s sin 2p s ~ cos p 3C1 B . (l) , -—

In the generalized method the pressure is considered constant along first-
family Mach lines (refs. 1 and 4). As a conseguence, the right~hand
member of equation (1) is approximated by zero, and the equation cean be
integrated to yield the well-known Prandtl-Meyer relation. The obJjective
of the present anelysis is to refine this approximation to the right-hand
member of equation (1). To this end, consider the flow about a body of
revolution which has a pointed nose and over which the flow is everywhere
supersonic. The problem will be simplified by epproximating the profile

1Tn the treatment of two-dimensional flows, the first approximation is
used but continuity is exactly satisfied.

2This equation can be derived directly from the continulty, momentum,
energy, and state equations with the aid of characteristics theory (see,
e.g., refs. 2 and 9). In this form, the equation applies equally well
for rotationsl and irrotational flows, requiring only that dE/ds not
dE/dn Dbe zero. —
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of the body with a series of tengents to the .original contour (see i _
sketch (a)). It might be noted that Ferrari (ref. 10) suggested a similer .
scheme with a body whose profile was made up of chord lines Joining points

Tangent body

.r—— )

Original body

e —————

Sketch (a) L.

on the oirriginal contour. While either approximation is permiseible, the )
tangent body was sélected here so that the conical flow at the vertex . L
will be correct regeardless of the degree of approximation used downstream

of the vertex.

The. generalized method gives the exdgcet change in surface pressure
sround the corners of the tangent body but predicts nc change along the.
straight-line elements. The present problem reduces to the determination
of the pressure variation along the straight-line elements (see sketch (b)).

Mach Ifnes———\
/L

Streamline

Sketch (b)
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For simplification, the derivative, dp/dCi, will be approximated with a
difference equation; thus, - along the straight-line element, equation (l)
mey be written (since 35/ds =

® o (2)
EE - 1C08 M i 4

where Ap 1is the net chaenge in pressure along Mach llines emanating from .
the surface and AC; 1is the corresponding length. This equation will be
solved by an ilteration procedure based on the solution given by the gen-
eralized method. As previously noted, with the generalized method the
flow is considered two-dimensional end, consequently, no pressure change
is predicted along streamlines between the expansion fans at either end

of the straight section. While this approximation may be appreciebly in
error for the surface streamline, it is apparent that the real flow will
appear more nearly two-dimensionsl at large distances from the body axis.
It is reasoned, therefore, that a streamline, well removed fram the axis
(1ine AB in sketch (b)), can be found along which the pressure will also
be constent to the accuracy required here.® For all Mach lines (such as
CD) emanating from the straight surface then, the pressures at the points
of intersection with this streamline will be equal. The term, Ap, in
equation (2) therefore can be written as k; - p, where k; is & constant
end, of course, p 1is the varylng surface pressure. The generalized
method also prescribes that the length (from the surface to streamline ADB)
and inclinations of all Mach lines will not change when the surface is
straight. The term, AC;cos p, therefore can be represented by a second
constent, 1/ko. Equation (2) thus mey be written

o)
35 = ka(ky - p)
which can be integrated to yield

= ky + kge 28 - (3)

where ks 1s the constant of integration. This analysis serves to

establish the form of the equation representing the pressure distribution _

on an element of the tangent body.% It remains now to evaluate the three
unknown constants in equation (3). Three known conditions can be employed

~SExamination of cheracteristic solutions for the flow about cone-
cylinders indicates that the pressure variation along streamlines, a moder-
ate distance from the surface, is markedly less than that along the surface.

4Tt might be noted that Ehret, Rossow, and Stevens (ref. 11) found

that pressures on ogives correlated according to the hypersonic similarity
law could be represented approximately by an exponential function of
distance.
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for this purpose. First the pressure, Just downstream of the corner, pg,
can be calculated exactly from the Prandtl-Meyer equations 1f the pres-
sure, piy, and the Mach number, M;, upstream of the corner are known.
Second, the pressure gradient Jjust downsbtream of the cormer may be cal-
culated from the results glven in Appendix B. The expresslon defining
this gradient is .

o) . B2 <9L . - Bz & 38
852 = T 92"“5121 51 sin 52 By o 7\1 + as A

-

k)

+

where = - - - e

2yp - -
- . (5)

_ ypM® - . -
T o(M® - 1) (6)

end 415 the one-dimensionsal area ratic or

7+1

1+ <? 5 %>142 =0

¥y + 1
2

(7)

=+

D =

For the-third condition, it is apparent that the pressure on the element
shown in sketch (b) would epproach some limiting value if, rather than
ending at point 3, the element were extended as indicated by the dashed
line. If the element were considered to be infinitely long, sc as to
form an extended conical surface, then the only effect the reglon shead

of point 2 will have on the flow at infinity is to form an infinitesimally
thin layer near the surface across which the entropy varies. It can be
demonstrated, however, that there is no pressure change through this layer
end that the flow outside the layer is conical. Consequently, the limiting
pressure is simply, P., the pressure on a cone tangent to the original
body at the same point as the element shown in sketch (b) (and, of course,
traveling at the same free-stream Mach number). With these three condi-
tions, the three unknowns in equation (3) may be evaluated end there is
obtained

D =D, - (P - D2)e ! (8)

R
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where

=§E X - Xo .
1 aS:L (Pc (9?

- Py)cos B2

It is spparent that, in order to apply equation (8), the pressure
(end Mach number) on the surface of noninclined cones must be known. These
quentities may be determined from the results of reference 2 or reference
12. For convenience, the curves shown in figure 1 have been plotted from
the results of reference 12. o

By epplication of equation (8) on successive elements, the pressure
distribution on the tangent body cen be determined. In particular, the
pressure at each of the points of tangency may be calculated and applied
to the original body. The procedure is as follows: First, the elements
of the tangent body are selected and the coordinates (x,r) of each corner

determined. The Pirst element is tangent to the body at the vertex, and

the Plow over this element is thus conical. For the first corner, then,
the pressure, pi1, and the Mach number, M; (see, sketch (v)), are the same
as at the vertex of the originasl body. The pressure, pz, and the Mach
number, Mo, mey then be determined with the Prandtl-Meyer equations. The
pressure gradient, (dp/ds),, may be determined from equation (4) since,
for the first corner, (dp/ds)i is zero. The tangent-cone pressure, Dec,
mey be obtained from reference 12 or figure 1. With the various factors
in equation (8) thus evelusted, the pressure at the tangent point and at
point 3 (see sketch (b)) can be calculated. In like menner, the pressure

gradient st point 3 can be determined by differentiation of equation (8),

or

@5)3 i} (p%c-_ﬁg @5)2 (20)

With the pressure and pressure gradient at point 3 known (the Mach number

may also be .calculated from the pressure in the usual menner), the factors
in equation (8) may be determined for the next element. This process is,

of course, repeated for each element of the tangent body.

The procedure just described is not difficult to apply; however, fur-
ther simplification cen be obtained by the use of a "two-step” tangent
body. This body consists of a cone tangent to the original body at the
vertex and a conical surface tangent to the body et the station where the

pressure is to be calculated. With this two-step body, the second surface

is a varisble depending on the station in guestion on the original body.
For this approximation, equation (8) becomes -

P =pc - (pe - ps)e-Bw o o (11)
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where T : - o s S R

x sin &y - r cos By

r cos8 & - x sin & (12)
By Qy sin &
¥V = —— - — 13
(Pc = Ps) QS sin 5‘\!/ ( )

The subsciript, s, denotes quantities at the station on the body as eval-
uated by ~he generalized shock-expansion method. With equation (11) it

is possible to obtain, very rapidiy, a first‘approximation to the pressure
distribution.

The second-order shock-expasnsion method has been developed to predict
the pressures on a noninelined body ofrevolution. In the followlng sec~
tion this method will be extended to lifting bodies.

Lifting Bodies

For inclined bodies of revolution, a second-order shock-expansion
method would involve not only e revised expression for the pressures, but,
in sddition, a revised approximation to the shape of the surface sgtream-
lines. It is recalled from the results of Eggers (ref 1) thet, according
to the gerneralized method, surface streamlines may be approximated by
goedesics.: For bodies of revolution, Savin (ref 3) noted that the per-
tinent gecdesics are simply meridian lines. While this result is exact
for noninclined bodies of revolution, it is only an approximation in the
case of inclined bodies. A refined spproximetion corresponding to a
second~order method undoubtedly could be obtained by graphical integration

of the momentum equations employing the pressure dlgtribution given by the =

generalized method. Howevér, it seems at present that this procedure would
involve extemnsive calculstions. If attention is restricted to bodles near

= 0, it—can be demonstrated that the deviation of the true streamlines
from the meridian lines will not influence surface pressures. The approx-
imation of meridian lines as streamlines can, in effect; be retained and
relatively simple expressions can be obtalned, therefore, for the initial
slopes of the normal-force and pitching-moment curves. To this epd, the
expression-for the normel-force derlvative can be writtenS

( ch f Ar dx (14)

SThe subscript, « = 0, has been omitted for simplicity of notation.

Fd
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where A is the nondimensional loading on a thin disk normal to the body
axis and having unit redius. This loading A is given by the equation

2 % a(p/po) ,
A = 7M02ﬁ\]p dn? cos @ 49 (15)
o

The problem then is to evaluate d(p/po)/dm. The development given pre-
viously which led to equation (3) a2lso applies to bodies at infinitesimal
angles of attack. Equation (8) also applies; however, the varisbles in
this equation must be considered as dependent on angle of attack. By
differentiation of equation (8), there is obtained

an

WB/2o) _ () . ooy UelPo) , o ApalBe) | (L p e (g

do des do,

d a
This equation must satisfy the condition (34?0) = (Pzépo) at 4 =0

(i.e., x = x2). By the application of this condition to equation (16),
the last term (involving dn/da) is eliminated.® The term, d(pz/po)/da
mey be evaluated with the aild of the Prandtl-Meyer equation

do Az

d(p2/Po) Ao [d(Pl/Po) p1 1 d(Hl):l po 1 d(Ez)
do Po Hi do

T d& " To TP B aw - an

Ferri (ref. 13) has shown that the entropy (and hence the total pressure,
E) on the surface of an inclined cone is constant (independent of ¢).
When equations (15), (16), and (17) are combined, then, the integrals of.
the terms involving dH;/da and dHp/do will be zero (since .[“cos @ do=0).
Equation (15) may therefore be written o _

b . a _
A=7M§2:t[ [(l-en)_%_bo)+en%up_;fgl:léosmé¢ (18)

The only terms in equation (18) that are functions of ¢ are d(pe/Do)/de
end d(p1/py)/dex. These two terms may be evaluated in terms of the normal-
ac
force derivative of the btangent cone, 15% tox? and in terms of A;. After
performence of the necessary manipulations, there is obtained
8This result indicates that the lifting pressures at small sngles of
attack vary in s manner analogous to that of the pressures at o = O.
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- dCy -
= (1 - e™M)(tan 8) == o TR © MAx (19)

It is apparent from equation (19) that dCN/Hm for cones must be
known before the loading A can be evalusted. Fortunately, resulte for
cones are available from reference 1Lk and have been plotted for convenilence

in figure 2. The loading, A, may thus be calculated in the same manner
as the zero-lift pressures. In thils case, A, for the first corner is

simply (tan B&v) .
tev

As before, a first approximation to A can be obtained with the
two-step body. This approximstion gives S

- - ac |
A= (1l ~e B‘l’)(tan 8) ?Eg o + %5 e PVian Sy %;? . (20)
v cv

In Appendix C, it is shown that equation (20) leads to very simple results
for certain common body shapes. .. -

With the loading, A, known, the normal-force derivative may be eval-
uated by integration of equation (14)}. In like manner, the pitching-
moment derivative can be determined from the equation?

—-——KEE[Arxdx (21).

A second-order shock-expsnsion method for bodles of revolution has
been developed to predict the pressure distribution and the normal-force
and piltching-moment derivatives at o =.0. The results are relatively
simple in form and may be applied to & given body with only & moderate
amount of romputations required. Simplified expressions based on an addi-

tional approximstion have also been presented which further reduce the -

amount of work required. It should be noted, however, that ‘open-nosed
bodies and pointed bodies which produce shock waves other than the one at
the vertex regulre specisl forms of the method.® The necessary equations

7The contribution to the pitching moment of the variation in local

axial forces with angle of attack is small for. slender bodies (see T

ref. 15) end will be neglected throughout the present analysis.
8T+t may also be notg% that boattailed bodies present a speclal problem

since neitheéer Pc 0O o |4ox is defined in this case. In practice, how-
ever, it has been found by comparison with results glven in reference 16

ac
that the use of p. = Py and TEglt = 2 glves reasonable results for .

) cxX
bodies having moderate amounts of boattall.

5T
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for these cases are contained in Appendix B. In addition, there are
several restrictions on the present method which should be mentioned.
First, 1t 1s epparent that if the exponential variation of the pressures
is to be valid, then the pressure gradient just downstreasm of the corner
must have the same sign as the pressure difference, pe - pz2- This condi-
tion is given by 7 = O in the general case snd by ¥ > O for the simpli-
fied method. There is an additional restriction on the simplified method,
and that is that the two-step bodies must be real bodies, (i.e., the
intersection of the two tangent lines must not occur at negative values

of x or r). This condition is given by B > 0. When 7 = Oor B¥ =0,

all equations reduce to those given by the generalized shock-expansion
method. : .

It remains, of course, to determine the accuracy of the second-order
shock-expansion method and to define its range of applicability. There
are sufficlent data available, both from experiment and from character-
istic solutions, with which the predictions of the method for zero-lift
pressure distributions cen he compared. However, for the case of 1lifting
bodies, sufficient date are not availeble, and for this reason, the exper-
iments next discussed were conducted.

EXPERTIMENT

An experimental program was conducted to determine the initisl’ slopes
of the normsl-force curves and the centers of pressure for a series of
nose-cylinder combinations. The tests were designed, of course, to permit
a check on the accuracy of the predictions of the second-order shock-
expension method Jjust developed. It is recalled that the method is
intended for application at values of the hypersonic similarity parameter,
Mg/fn 1n the neighborhood of 1. The tests cover a range of Mg/fn from
0.43 to 2.09.

Apparatus and Tests i —

The tests were conducted in the Ames 10- by 1lh-inch supersonic wind
tunnel at Mach numbers of 3.00, 4.2k, 5.05 and 6.28. For a detailed
description of .this wind tunnel and its serodynamic characteristics, see
reference 17. Normel forces and pitching moments for the test models
were measured with a strain-gage balance. The balance consisted of a model
support sting on which the moments were measured at four polnts. From
these four measurements, the normal forces and centers of pressure were
determined and checked. Measurements were made at nine angles of attack
from -20 to +4° at each test Mach number. At each angle of attack, the
values of X/d and Cy/a were calculated. These velies were plotted as

& function of angle of attack, and the intercepts at o = O of the result-

ing curves gave the values of dCy/da end X/d at o = O.
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Wind-tunnel calibration data (see, ref. 17) were employed in cam- .
bination with stagnation-pressure measurements to Qbtain the gtream -
dynamic pressures. Reynolds numbers based on the meximum diameter of the
models were ) - - = T

Mach number Réymolds nudber,”

million
3.00 0.79
4,24 T2 - o -
5.05 .35 ' -
6.28 .15 . -
Models -

Conees and cireular-arc tangent ogives of fineness ratlos 7, 5, and
3 were tested alone and with cylindricel afterbodies having lengths of- )
2, 4, 6, and 10 dismeters. The models were made of polished steel and -

each had a base diameter of 1 inch. . -
Accuracy of Test Results

Streaim Mach numbeérs in the region of the test bodies did not vary
more thad £0.03 from the mean velues at Mach numbers up to 5.05. A maxi-
mum varistion of +0.05 existed at-the highest test Mach number of 6.28.

The -accuracy of the test results is influenced by uncertainties in
the measurement of-moments and in the determination of the stream dynasmic
pressure ghd angle of attack. These uncertalnties resulted in estimated
maximum errors in the normal-force derivatives and centers of pressure as
shown in:the following table:

Mo |dCy/da | x/4
3.00 | *0.15 | %0.10
beole | £,15] #£.10
5.05 | .20} #.15
6.28 | *£.25| .20

It should be noted that, for the most parﬁ, the experimental results
presented hérein sre in error by less than these estimates.

A
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RESULTS AND DISCUSSION

Nonlifting Bodies - —

The second-order shock-expansion method has been developed primarily
to treat flows characterized by values of Mb/fn near unity. Accordingly,
the method has been employed to obtain the.zero-lift pressure distribu-
tions at Mo/fn = 1 for several different body shapes.® The results are
shown in figure 3 along with distributions obtained with the generalized

shock-expansion method (ref. 2). Distributions obtained with the method
of characteristics (refs. 11, 18, and 19), which are considered to be
exact, are also shown. It is aspparent in figure 3 that the present method
provides an improvement over the generaslized method. The differences in
the distributions obtained with the present method and those obtained
with the method of characteristics are almost indiscernible.

In figure 3(c), comparison is also made with the predictions of the
hypersonic small-disturbance theory (ref. 8). The curve shown was cal-
culated by three terms of a power series representation of the pressure
distribution. As noted in reference 8, additionel terms will be required
before this method will accurately predict the pressures on an ogive.

Even when the additional terms are obtained, however, it seems unlikely
that the small-disturbance theory will provide a more accurate estimate

of the pressures than provided by the present method for the case shown.
The small-disturbance theory does have a certain advantage in simplicity
for, if the coefficilients of the series expansion are known, the pressure
distribution can be calculated very easily. This advantage is partially
offset by the restriction that the series method requires the body profile
to have continuous derivatives up to the same order. as the number of terms
used in the series. With this restriction, the theory cannot be applied
beyond the nose-cylinder juncture of the body (fig. 3(c)). _

To investigate the accuracy of the present method at values of Mo/fn
other then 1, the comparisons shown in figure 4 have been made. Here, -
the predictions of the present method and those of the generalized method
sre compared with experimental results for fineness ratio 3 and 5 tangent
oglves at Mach numbers of 3.00, h.2hk, and 5.05. 10 The values of Mo/f
range from 0.60 to 1.68. The experimental results were taken from refergnn
ence 3. For all cases shown, the predictions of the present method are
within the accuracy of the experimental deta. It is also apparent that

SIn gll epplications of the present method to. curved bodles, the
tangent bodies employed were formed by elements tangent to the original
bodies at stations X/Zn =0, 0.1, 0.2, . . ., 1.0. The tangent-body
approximation is required only if the body profile is curved since for
cone-cylinders, and for the cylindrical section of any nose-cylinder com=-
bination, the present method yields results in closed form. )

10For some of the cases shown in figure U4, the semiempiricel methods
of reference 20 may be used.
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the predictions of the present method tend to approach those of the gen-

eralized method as My /fn becomes appreciably greater than 1. At .
Mo/fn = 1.68 (fig. 4(f)), for example, the predictions of the two_mgthgds -
differ only slightly. -

In.figure 4, comparison 1s slso made with the second-order potential
theory (ref. 5) for conditions where this theory is applicable (1.e.,
O/f = 0.60 and 0.85). It i1s somewhat surprising that the present method
is as accurate as the second-order potential theory even at the relatively
low valae of Mo/fp of 0.60. R

The results presented in figures 3 and 4 indicate that the present
method fulfills its Iintended purpose by providing an estimate of the
pressures_on.noninclined bodles of revolution for velues of Mo/fn near 1.
At values of. Mo/fn as low as 0.60 the present method provides results ’
comparable in accuracy with those obtained with the second-order potential
theory. - At values of My/fn approaching 2, the predictions of the present -
- method and those of the generalized shock-expansion method differ only
slightly. It remains now to investigste the applications of the method
to inclined bodies. - T =

Lifting Bod.:’x_.eS' PR SRURELEE - . —_ ______;_

The experimental results obtained.in the present tests are given in
tables I and TI. Predictions of various theories are also tabulated.
These include the predictions of—the present method (with various spproxi-
mations), the generalized shock-expansion method (reéf. 3), first-order
potential theory (refs. 6 and 21), Van Dyke's hybrid potential theory
(ref. 6), and Newtonian impact theory (see, e.g., ref. 22).1% With the Lo
exception of the two potential theoriesy all theories have been applied
throughout the entiré range of—test variables. The potentisl theories
cannot bhe employed, of course, 1f the free-stream Mach angle s less than
the body semivertex angle. : : e — =

Normal-force derivative.~ The experimentally determined normal-~force
derivatlives and the predictions of the various theories®® for the bodies
tested are shown in figures 5(a) through 5(f). In general, the present
method predicts the normal-force derivatives at zero angle of attack

1laplutions with the second-order ‘potential theory employed in the
epplicasion of the hybrid theory were obtained with the aid of refer-
ence 23, (Additionsl results obtained with the first-order and hybrid
potential theories-and with Newtonian impact theory may be found in ref-
erence 24.) - _

" 120urves for the first-order potentisl theory are not shown in filg- o
ure 5 since, in all except a few cases, the predictions of this theory
did not differ significantly from those of the hybrid potential theory
(see tables I and II).
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essentially within the accuracy of the data (within sbout +0.2) through-
out the entire range of test varisbles. In addition, the present method
appears to provide the most consistently accurate results of all the =~
theories presented in figure 5. The accuracy of the method at low values
of Mo/fn can be explained partially by examination of the predictions
of the method for the limiting case of very slender bodies. In this
limit, it can be shown from equations (4) and (9) that the term, 1,
approaches infinity. From equation (19), then, the loeding, A, may be
written

- - o 4x
A=2tn 8 =25 (22)
since %‘;_N ox = 2 (see, fig. 2). With the substitution of this equation
cX

in equation (14), there is obtained
1
qu-_-Ef(zd—r-rdx:f.—a- %x“idx (23)

This result is, of course, the well-known prediction of slender-body .
theory, which is known to be accurate for slender bodies at low supersonic
speeds. Thus, the accuracy of the present method at low values of Mb/fn
can be attributed, in part, to the fact that it reduces to slender-body
theory in the limit. : Co :

From the results given in figure 5, several observations can be made
concerning the accuracy of other theories. TFor example, it might be -
expected that the potential theories would be more accurate than the other
theories when the parameter «/Mba - 1 tan By is appreciably less than 1.
For the fp = 7 cone at Mo = 3 (fig. 5(a)), however, this parameter is
only 0.20, end yet, for the longer afterbodies, the hybrid potential theory
is apprecisbly more in error than the present method. As found in ref-
erences 2 through 4, the generalized shock-expansion method gives accurate
results when Mo/f is greater than sbout 1. Caution should be expressed
here, however, for the significant parameter is truly MO/T and not
Mo/fn. The results shown in figure 5 indicate that although My/fn may
be apprecisbly greater than 1, for cases where the afterbody is suffi-
ciently long to reduce Mo/f below 1, the predictions of. the generalized
method may depart appreciably from the experimental results. In general,
impact theory gives acceptable results only for nose sections  without
afterbodies. -

Center of pressure.- The experimentally determined centers of pres-
sure and predictions of the various theories for the bodies tested are
presented in figure 6. The present method predicts the location of the
centers of pressure essentlally within the sccuracy of the data (within
about *0.2 body diameters) throughout the entire range of test varisbles.




18 s : - “ NACA TN 3527

In addition, the present method again provides the most consistently
accurste results of all the theories presented. In genersal, all observa-
tions msde previously regarding the religbility with which the various
theories predict the normal-force derivatives can also be made in the o
case of tke centers of pressure. - o

Ranges of applicability.- Several parsmeters are useful for defining
the ranges. of epplicability of the various theories. The ranges of these
parameters covered by the present tests are.shown in the faollowing table:

Parameter Rerige
Mo 3.00 to 6.28
f 3 to 17
fn 3t 7
0 to 10
Mo/f 0.18 to 2.09
Mo/Ta 0.43 to 2.09
JMoZ - 1 ten By | 0.20 to 2.12

The sescond-order shock-expansion method was found to be applicable
throughout the ranges of varisbles shown in the table. Both dCy/do and ~
i/d were predicted within +0.2. The present tests did not reveal the
limits of applicability of the method. It—was indicated, however, that
the method may apply to relatively low values of My/fn (ornJMo2 1 tan 8y),
since, in the limit of very slender bodies, the method reduces to the -
well- known.slender—body theory. The upper limit.of .the method is dlctated
by the condition specified in the development - namely, n = 0 (see )
eq. (8)) Calculations have revealed that this condition will be violated

if fMo2-1 san By 1is appreciably greater than 2.5.

The present tests also reaffirmed the conclusion given in references 1
through 4, that the generalized shock-expansion method is appliceble when
Mo/f is greater than about 1. At values of Mb/f appreclebly greater
than 1, no ¥ignificant differences between the predictions of the general-
ized and second-order methods were found. The ranges of applicabillty of
these two riethods overlap snd thus include most flows about_pointed bodies__
of revolution throughout the intermedlate- and high—supersonlc speed

ranges. e : FomEr RS

Application of the potential theories is, of course, limited by the
condition that:iMoz-l tan &y must be less than 1. Even at the lowest
values of NMo2-1 tan 8y covered by the present tests, however, neither
the first-order nor the hybrid potential theory was found to provide con-
sistently eccurate predictions of dCy/de or X/d. The calculations per-
formed alsc revealed no significant differences in the predictions of the
two theories at values of JMoz—l tan 8y less than about 0.7.
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Approximations of the Present Method

As noted in the development of the present method, a simplified solu-

tion for bodies with curved profiles can be obtained by the use of a two-__'vvi

step tangent body. This approximation has been applied to the oglve-
cylinders of the present tests. By the use of additional approximations
to the loeding, A, the simplified solutions for dCy/de and X/d can be
obtained in closed form as discussed in Appendix C. Examples of the
accuracy of the spproximate solutions are shown in figure 7. While the
approximate methods do not yleld results so consistently accurate as those
obtained with & more complete solution, the approximate methods may still
be useful to obtain rapid estimates of dCy/dx and X/d. In this connec-
tion, these quantities can be estimated for ogive-cylinders in a very

few minutes with the aid of the results given in Appendix C.

CONCLUSIONS

A second-order shock-expansion method sppliceble to bodies of revolu-
tion near zero 1lift has been developed. For noninclined bodiles, the pres-
sure distributions obtained with the method were compared with existing
experimental results and with the predictions of other theories. For
inclined bodies, the normal-force derivatives and centers of pressure at
zero angle of attack determined with the method were compdred with the
predictions of other methods and with experimental results. Cone- &nd
ogive-cylinders with fineness ratios from 3 to 17 were tested at Mach -
numbers from 3.00 to 6.28, corresponding to a range of values of the
hypersonic similarity parameter based on nose flneness rstio (i e., the
ratio of free-stream Masch number to nose fineness ratlo) from 0.43 to
2.09. These comparisons led to the following conclusions: o

1. For noninclined bodies, the present method predicts the pressure
distributions within the accuracy of experimental results. At values of
the hypersonic similarity perameter based on nose fineness ratio as low
as 0.6, the present method is as accurate as the second-order potential
theory. At values of the parasmeter approaching 2, the predictions of
the present method differ only slightly from those of the generalized
shock-expansion method.

2. For inclined bodies, the normal-force derivatives and the loca-
tions of the center of pressure at zero angle of atback predicted with
the present method are in good agreement with the experimental results
throughout the entire range of test variables. Within this range, the
present method yields results more consistently accurdte than those of
other avallsble theories.

Ames Aeronsutical Laboratory
Nationel Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 12, 1955
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APPENDIX A
WER SERTES REPRESENTATION OF FLOW ABOUT BODY OF REVOLUTION

The accuracy of the present method has bpeen demonstrated by compar-
isons made over a wide range of flow parameters. It 1s also informetive,
however, Lo examine briefly the mathemstical accuracy of the method. For
this purpose, the model shown in sketch {(c) is useful. From the vertex

Sketch (c)

to point 1, the body is conical. Between points 1 and 2, the surface is
deflected by a small angle, €. At any point downstream of point 1, the
physical devisation of the body from a conical surface may be given in
terms of the angle, €, and the distance, As, measured from point 1. Simi-
larly, flow parasmeters at any point downstream of point 1 may be expressed
in terms of- € and As. Before developing such an expregsion, it should

be noted that for this model (and within the restriction that the flow is
everywhere supersonic), the present method provides an exsct solution for
the surface flow in seversal limits. For example, the present method is
exact for all values of As vwhen € = 0. For As = O and As »«, the
method 1s exact for all values of €. For arbitrary values of As and ¢,
of course, the present method 1s not exact. However, the general sccuracy
of the method can be demonstrated by expressing flow parameters in the
form of a Taylor series in the two independent varisbles, € and As. The
dependent varieble used to define the flow may be any one of several param-
eters. Pressure and velocity are among those most commonly used. In the
present aenalysis, however, the Prandtl-Meyer angle, v, is considered the
dependent variable. It should be recognized that the velue of the Prandtl-
Meyer angls st a point will define the Mach number, pressure, velocity,

and other such parameters. We have then the series
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v=v1+<g-:->l(As)+<%>le+
5[ G, +Astp) 201+ (Bg2) (=] +

=& 1(A's)~°*+3 et (000 (5 %m) e + (S8 )(e JiE

(A1)
Each of the derivatives is evaluated at As = € .= 0. When € = 0, 1t is
apparent that the flow parameters are constant along the surface and
independent of s. Therefore, all derivatives wlth respect to s alone
are zero. When As = O, it is also apparent that (Jv/d8); = -1 and that
all higher derivatives with respect to © &alone are zero. We have then’
the problem of evaluating the cross derivatives. The second-order cross
derivative, (O v/as 08), may be evalusted with the aid of equation (Blk),
from which (3v/ds)> mey be determined; namely,

v
®, 2@, s Geen ) w
It is &lso spparent that
@), 3@,

in the limit as 8z > 8;. Hence, by virtue of equation (A2),

3y -cos By l: MZ - 1 tan & l]
— - - by
5o 88:)1 e R (N My an ;) ) (Ak)

As noted in Appendix B, equation (B14) is not an exact solution for the
pressure gradient. It cen be demonstrated, however, that equation (A2)
is accurate to the first order in e and hence, equation (Al) is exact.t

IIn the derivation of equation (B1+) a term,

2cosp.2f 7\cosp.< >

was neglected (see eg. (B1l)). In the present snalysis, both Sp/dCi
and the interval of integration, (ss - s,)/b (see sketch (d)), are of
order e€; hehce, the neglected term is of order e2.
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With the substitution of equation (Al) in equation (Al), and with the
application of the other results previously noted, there is obtained

_= ) _ cos Oy = ; . N
v Vi € &'lm l:(t\) My ._l tan 81) l](Aﬂ)(E) +

o[ (as)3(e), (as)(e)?] ' (a5)

The generalized shock-expansion method of references 1 through 4 gives
the result that v = vy - €. The generalized method gives the Prandtl-
Meyer angle mathematically accurate to the first order of the independent
variables € and As and, therefore, immedlately downstream of the corner,
glves a lTirst-order solution for the surface flow. The present method
adds the coefficient of the term involving (As)(e) in equation (A5) and,
hence, glves the Prandtl-Meyer angle mathematically asccurate to the second
order of the Independent varisbles e and As. In general, therefore,
immediately downstream of the corner the present method gives a second-
order solution for the surface flow, and therefore, it has been termed

the second-~order shock-expansion method.

The foregoing anslysls considered only expanding flows sbout the
corner. If € 1s positive, then the shock wave emsnating from the corner
must be considered. The result obtained is essentially the same, however.
For positive € a term of O0(e®) must be added to equation (A5) to account
for the difference between the Rankine-Hugoniot equations and the Prandtl-
Meyer equations. Alternately, the term, -¢, in equation (A5) can be
replaced with the change in Prandtl-Meyer angle between points 1 and 2
as glven by the Rankine-Hugoniot equations. The second-order term in
either cage is identlcal, however, as equation (Al) may also be obtained
by differentiating equation (B21). (It may also be obtained by differenti-
ation of the exact pressure-gradient equation, eq. (B18).)
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APFENDIX B

EVALUATION OF PRESSURE GRADIENT DOWNSTREAM OF CORNER OF BODY
OF REVOLUTION

Convex Corner

Along a streamline in axially symmetric flow the following relation
holds (see eq. (1))

op

'a—s"7\

5 _ 1 Op _ =N (/o5  sin p sin d
3z ©cos u 3Cy cos [ BCJ_"' r (81)

From this equation, we may also write

3 ] - 8
E = COS u@s A a—s (Ba)
= d d B
o8 _ _sin pusin® _cos u /Op _ 5 98 (B3)
3C, r A @s A _as>_

Consider now the flow in the region of & convex corner on & body of
revolution as shown in sketch (d). Between points 4 and 5, we may write,

Mach lines

Streamllne

Sketch (d)
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from equition (Bl)

p5 - 5 ’
dp _ - _ 1 dp
[ % - (55 - Ba) v[ i (501) as (34)
4

If points 4 and 5 are near to the surface, eguation (Bh) may be apprax11

mated by

P2 5
_<_1_E|P5'P2_P4-P1_5_5=/" Ap
{? TN T Az A1 (35 <) J A cos p \aC ds
1 )

(B5)

Since the’ flow between points 1l and 2 is strictly of the Prandtl-Meyer
type, .

Pz _ C T
a
f —%:Vl—\/2=52-51. (36)
1

We may also write from equations (B2) and (B3)

| B (30 ) - %&% [@_le ) 7\2@—32]10 (=7)

Pa - P13 _ 1 /3p Sl r@ - & :]
7\1 ) B ?\]_ BCJ_> & 7\1 ’_ 38)1 7\1 aS 1. = (B8)
1
3% sin ppsin 5 cos Uz [(ép (?6 ]
Bg = O  ([=—]Db = B = - —_ - — 1 b
5 = %2 4 ac:)2 2 - =% Lo v as>2 P as>2
(B9)

B4

sin pisin B8y cos 3 Sp 38
"By + <§C > &1 - T . a Ay [<§?>1 1(35) ]

(B10)
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2 cos us |/3p) _ o) _2cosul<§2 _ fo1o)
A2 [ Bs>2 }\? Bs>2}b AL I: ds /4 7\1@5 1 =
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When equations (B6) through (B1O) are substituted into equations (B5),
there 1s obtained

sin pssin Bp b - sin pisin 8y s 1 op ds
T r - A cos p \oCi1
(B11)

Tf it is assumed that a first approximation td the flow is given by the
generalized shock-expansion method, then the right-hand member of equa-
tion (Bll) mey be neglected. Equation (Bll) may thus be written

@) - 2(@) = ___7\2——— l:(-é) sin pisin B; - sin ppsin 52:| +
3s,/5 ds/, 2r cos po |\P __

st b t:( HE®, - &), w2

In the limit as the streamline between points 4 and 5 approdches the
surface, the ratio, a/b , may be evaluated in terms of the one-dimensional
area ratio

a _ <sin pa Q1

I sin p1/ Qo _ (Bl3)

o

With the substitution of equation (B13) into (Bl2), there is obtained }
after combination of terms — e



S - . B - - - - - — - I T Ealrt -

; - " NACA TN 3527 .
@), @), B ) 2 B[E) )]
| | (B14) B

e o - N ol A : T '“!1"-4*"'—'
B ='2(M; 1-'{21) (B15) '-;

<

and, of course . R : TR

(y+1) ' T
L, (7 ; 1) e 2(r-1)

<? Z %> ) (Bi7)

Equation (Bll) represents only an approximate evalugtion of the
pressure gradient. More exact evaluations may be found in references 10
and 25. These more exactresults, of course, require numerical or graph-
lcal integration. _ _ .

Concave Corner

In most cases, the tangent bodies used in the application of the
present method will have convex corners. There 1s a possibility that
concave corners may be encountered. In the event that the original body
does not have sharp concave corners, equation (BllL) will still suffice
since the flow along the surface is still isentropic. However, if the
original body does have sharp concave corners, then the pressure gradient
for this case will also be reguired. Thie result can be obtained in the
same way &g equation (Blk); however, the shock wave emanating from the
corner must be considered after the manner described in reference 9. The
expression defining the pressure gradient in this case is :



SR el R A ] % @) sto- v}
1 (G5 [t - s w5 ) [m“’ S G )““‘“ )

AP B
u u 1 (]
l+—Mu

where
| (y t?’]) p M8 sin(g ~ By)eos(o - 8y) 19
= B19
@glr sin{o - 8g)cos{c - (o - 83) :I
[ " sin{c - By)eos(o - Bu 7+ l My 51112(0' Bu)
| F=<'7_:t-_l.>(l+z—;_l-%2 gin(c - By)
(Bé0)

[(7 + 1)tan(8q ~ 8y)eos(c - By) - sin(o - 8y ) IMu=8in®(o - &) + sin(o - By)
1+ [1 - 2 sin®(c - By) + 2 tan(dd - Bu)sin(c - By)eos(o - 8u ) IMyZsin% (o - By)

12ZC6E NI VoM
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In these &guations, o 1s the shock-wave angle with respect to-the body
axis, and.(0H/dn), 18 _the variation of the total pressure normal to the
surface Jist upstream of the shock wave. The subscript, u, refers to
conditionis upstream of the shock wave, dnd the subscript, d, refers to.
conditions downstream. Equation (B18) represents the exact solution in
the usual s&nsé. All effects of the Interaction between shock waves and
Mach waveis are therefore included. TIn order to be consistent with ofther
parts of this analysis, these effects showld be neglected. In addition,
since equation (B18) is intended for application to a tangent body, the
body curvatures, (35/3s), and (38/ds)g, will be zero. It may also be
noted that the first step of the tangent body is a cone tangent to the
vertex of the original body. For this approximétion then, there will be
a small layer near the surface of the tangent body for which (3H/dm) = O.
With these approximations applied to equation (B18), a simplified result
can be obualned which will suffice for the present purposes.

QE [ | zootan pg ] _ 2By [siﬁ(c - 8y)sin By
T r

3 /sl "tem(o - oa) (o - 5q) o Bd] *

<3g> [Bg sin(o -USﬁ)”;f Pa _"#>'°5§(5 - By)tan ud]
ds uLBu sin(o - 83) Pu sin(c - 8g)
(B21)

For & body with a conceve corner, & special form must also be used
for the loading. Just downstream of the vorner and hefore the first—

convex corner

ac _ ) )
A=(1-eMNtan & -—E[ + (39 - F) e B22
(1 - e™Mtan 8 — N e Ay (B22)

and, thereafter,

- N N - 2 Ao P1

= (1 - e M)t —_— n A~ R

A (1 e"MYtan d ) tcx'l'—-.;\-;- e Ay + o A p0> GAy (B23)

where = : ’ ) . . SE- = i
7 [My2sin2(0 - &y) - 1]°

¥ " Toafpo) |17 - Lot (o - bu) + 2lPeini(e - Bu)

i iy



NACA TN 3527 . 29

The corresponding equations for open-nosed bodies of revolution are
similar. The pressure gradient at the leading edge may be determined
from equetion (B21) with My = Mo, 8y = 0, and (Op/ds)y = O. The loading
on the exterior surface is given by

dCy Ae - by AP
= - e : e M\, _ (B2 _ N2 21
A=(1L-e Mtan & cox v Ag <§o e p€> JIAy (B25)

where A, 1s the loading at the leading edge, or

4 sin oycos oy

Ay = —— "
G+ 1)1 - sin(oy - By)ecos(oy - Sv) o 4 cos®(ay - Sv)]
7 sin oycos oy (y +1 MoZsin®oy
(B26)
end J 1is defined by
; (MoZsin®oy - 1)2 ' (BE;)

) (pv/po)Mossinscv[(y - 1)My2sin®0y + 2]

For bodies with concave corners, and for open-nosed bodies, the total
pressure is not constant on the surface when the bodiles are inclined.
This variation in surface total pressure leads to the term involving Ay
in equation (B23) and the term involving Ay in equation (B25).
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EXTENSIONS OF THE APPROXIMATE METHCD

This analysis 1s based on the spproximste or fwo—step method pre-
viously mentioned. The basic equations of this method are equations (11),
(12), (13), and (20). Before proceeding with this analysis, 1t is con-
venient to write down the expressions for the function B (see eq. (12))

for _several types of bodies These expressions are presented in the

following table:

Expressions for B

r cos 5 - x s8ln &

Body For nose section |For cylindrical afterbody
- in - - \
Any body X 5in Oy - ¥ cos By 2fpsin 8v<f% - cos By

Jone-cylinder

(Not required)

Tangent-ogive-

1ind 1 _E
cylinder
v 1 + bep®
- ) r o X
Tangent-paraboloid fnz + <l.- %#) . o\~ T, -
cylinder . n
2 + 1 Nfn® 41

In ‘general, the equations for the normal-force and pitching-moment
derivatives may be integrated in two parts - one part for the nose sec-

tion and one for the afterbody. Thus, with the loading defined by

equation (20)

dCN
da T

dCm _ dCm
da &

nose

dCy

do

nose

. Gle'szn<} _ o 7Gaf2)

-G e—szn[(l + Gofn) - (1 + Gaofn + Gafa)e-sza]- (c2)

i

NN

e iy



NACA TN 3527 ' 31

where o
Psg sin 2u. - 4Cy cos
G = 2 a v Ve Sv (c3)
Ygecos Oy Py sin 2ug, da lgev
and ’ -
Gz = 2¥gsin By (ck)

The additional subscript, a, refers to functions evaluated for the after-
body (i.e., 8 = 0). Thus, from equation (13),

7(Psa/bo)Msa2 Qv
2(1 - Dag /po)(Meg? - 1) Tse

- (05)

The terms G; and Gz are functions of Mg end 8, alone. These
functions have been evaluated and the results are shown in figure 8. For
the special case of cone-cylinders, equations (Cl) end (C2) represent a
closed solution of the general method as well.

By the use of an additional approximetion to A, results in closed
form can also be obtained for ogival nose sections. Such an spproximation
is -

r dCy 2
(1-6e) =2| - G4]<tan 5)
aCy O ey
A = Ggtan —_— + Gatan & + }
ax Jgev tan &+
(cé)
where
Psa g8in 2“"\7' _\p.a
G‘a = Pv' Si'tl 2‘“‘5& € (07) )
and -
Ge = 2(1 - e Vo) (c8)

When equation (C6) is substituted in equations (14) and (21), equatione
are obtained in closed form for d4Cy/da end dCp/da. These equations
involve constants which are complicated functions of the nose angle By
(or nose fineness ratio fp). These functions can be expanded in a series

H
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in terms of By; the leading terms of these serieés are canstents independ-
ent of ‘By. In view of the spproximate nature of this apnalysis, the use of
the leading terms will suffice. Thus there is obtained

chl T, (1 + g )Cw (c
=X - L 9)
do logive 15 da. tev ’

1 %n kg B EEGS) ( (c10)
fn da ogilve 15 ' tev

To the accuracy of this analysis, these eguations also represent the solu-
tions for a tangent paraboloid. These equations have been éveluated for
a range of Mach numbers and nose fineness ratios. The results are pre-
sented in figure 9. Tt is apparent that with the aid of equations (Cl),
(c2), (c9), (C10), and figures 8 and 9, dCN/dx and dCp/da. for oglve-

cylinders can be evaluated approximately in a few minutes.
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TABLE II.- CENTERS OF PRESSURE AT ZERO ANGLE OF ATTACK
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TABLE II.- 'CEN‘I'ERS OF PRESSURE AT ZERO ANGLE OF ATTACK - Concluded.
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